
Security Audit Report
XLink - Peg-in Endpoints

November 2024

V202409

https://www.coinfabrik.com


Security Audit Report: Peg-in Endpoints - XLink

Executive Summary 3
Scope 3
Findings 3

Critical Severity Issues 4
CR-01 Bridge Hijacking due to Unverified Reveal Transactions 4
CR-02 Incorrect Token Transfer Handling for Non-Burnable Tokens 6
CR-03 Remote Code Execution Through Unvalidated Token Trait Parameter 6

High Severity Issues 7
Medium Severity Issues 8

ME-01 Missing Validation of Token Approval Allows Bridging of Disapproved Tokens 8
Minor Severity Issues 8

MI-01 Panicking on Possible Error 8
MI-02 Valid Orders Might Be Rejected Due to Insufficient Buffer Size Limits 9

Enhancements 10
EN-01 Remove Unused Functions 10
EN-02 Use secp256k1-verify for Signatures Verification 11

Other Considerations 11
Centralization 12
Upgrades 12
Privileged Roles 12

About CoinFabrik 12
Methodology 12
Severity Classification 14
Issue Status 14
Disclaimer 14
Changelog 15

Page 2 of 15



Security Audit Report: Peg-in Endpoints - XLink

Executive Summary

CoinFabrik was asked to audit the contracts for the XLink Peg-in Endpoints project.

XLink serves as a bi-directional bridge, enabling the transfer of assets between Bitcoin and its

Layer 2 networks. It facilitates interaction with L2 smart contracts using native Bitcoin (BTC) or

assets issued on Bitcoin's main network

During this audit we found three critical issues, one medium issue and two minor issues.

Also, two enhancements were proposed.

Critical and medium issues were resolved. One minor issue was acknowledged and the other

one was partially resolved. The enhancements were not implemented.

Scope

The audited files are from the git repository located at https://github.com/xlink-network/xlink, in

the ./packages/contracts/bridge-stacks/contracts/ directory. The audit is based on the

commit c97ffe567d1113475b63d6d6607215b99403a0a8. Fixes were reviewed on commit

47094431f52927bdc7d220c95a610bf75d23ba20.

The scope for this audit includes and is limited to the following files:

● ./btc-peg-in-endpoint-v2-03.clar: Endpoint for bridging Bitcoin native token (BTC)

into the Stacks network.

● ./meta-peg-in-endpoint-v2-02.clar: Endpoint for bridging BRC-20 tokens from

Bitcoin into the Stacks network.

● ./cross-peg-in-endpoint-v2-03.clar: Endpoint for bridging tokens from other

blockchains into the Stacks network.

No other files in this repository were audited. Its dependencies are assumed to work according

to their documentation. Also, no tests were reviewed for this audit.

Findings

In the following table we summarize the security issues we found in this audit. The severity

classification criteria and the status meaning are explained below. This table does not include

the enhancements we suggest to implement, which are described in a specific section after the

security issues.

Page 3 of 15

https://github.com/xlink-network/xlink


Security Audit Report: Peg-in Endpoints - XLink

Each severity label is detailed in the Severity Classification section. Additionally, the statuses are

explained in the Issues Status section.

Id Title Severity Status

CR-01
Bridge Hijacking due to Unverified Reveal
Transactions

❚ Critical Resolved

CR-02
Incorrect Token Transfer Handling for
Non-Burnable Tokens

❚ Critical Resolved

CR-03
Remote Code Execution Through
Unvalidated Token Trait Parameter

❚ Critical Resolved

ME-01
Missing Validation of Token Approval Allows
Bridging of Disapproved Tokens

❚Medium Resolved

MI-01 Panicking on Possible Error ❚Minor Acknowledged

MI-02
Valid Orders Might Be Rejected Due to
Insufficient Buffer Size Limits

❚Minor Partially resolved

Critical Severity Issues

CR-01 Bridge Hijacking due to Unverified Reveal Transactions

Location

● ./btc-peg-in-endpoint-v2-03.clar: 177, 204

● ./meta-peg-in-endpoint-v2-02.clar: 211, 239, 274, 312, 341

Classification
● CWE-345: Insufficient Verification of Data Authenticity1

Description

The following functions lack verification for the reveal-tx (reveal transaction) parameter to

confirm its inclusion in the Bitcoin blockchain:

● ./btc-peg-in-endpoint-v2-03.clar:

○ finalize-peg-in-cross

○ finalize-peg-in-cross-swap

1https://cwe.mitre.org/data/definitions/345.html

Page 4 of 15

https://cwe.mitre.org/data/definitions/345.html


Security Audit Report: Peg-in Endpoints - XLink

● ./meta-peg-in-endpoint-v2-02.clar:

○ finalize-drop-peg-in

○ finalize-peg-in-cross

○ finalize-peg-in-cross-swap

○ finalize-peg-in-add-liquidity

○ finalize-peg-in-remove-liquidity

While commit-tx (the commit transaction) is verified using an SPV proof, reveal-tx is not

verified. This omission enables attackers to perform front-running attacks by submitting a

fraudulent reveal-tx before the legitimate transaction is mined. Consequently, attackers can

mint tokens to their own address, undermining the peg-in process's integrity and leading to

unauthorized asset creation.

Steps to Exploit

1. Monitor the mempool for commit-tx related to the peg-in process.

2. Craft a malicious reveal-tx with the attacker’s Stacks principal.

3. Submit the malicious reveal-tx to the contract before the legitimate transaction is

mined.

4. The contract erroneously accepts the unverified reveal transaction, allowing

unauthorized minting of tokens to the attacker's address.

Recommendation

The listed functions should be modified to include SPV proof parameters for the reveal-tx,

enabling the verification of its inclusion in the Bitcoin blockchain. Implementing a verification

step similar to the one employed for commit-tx will ensure that only transactions of reveal

confirmed in Bitcoin are accepted.

Status

Resolved. In the commit where the fixes were reviewed, btc-peg-in-endpoint-v2-03.clar was

superseded by btc-peg-in-endpoint-v2-04.clar. This new contract removed

finalize-peg-in-cross-swap and fixed this issue in finalize-peg-in-cross.

In meta-peg-in-endpoint-v2-04.clar, the new version of meta-peg-in-endpoint-v2-02.clar,

this issue was fixed on finalize-peg-in-cross. finalize-drop-peg-in,

finalize-peg-in-cross-swap, finalize-peg-in-add-liquidity, and

finalize-peg-in-remove-liquidity functions were removed.

Page 5 of 15



Security Audit Report: Peg-in Endpoints - XLink

CR-02 Incorrect Token Transfer Handling for Non-Burnable Tokens

Location

● ./meta-peg-in-endpoint-v2-02.clar: 567

Classification
● CWE-840: Business Logic Errors2

Description

In finalize-peg-in-internal, the contract checks if the token is burnable using the no-burn

flag. If the token is burnable (no-burn is false), it correctly mints new tokens to the endpoint

itself before routing them to the recipient.

However, when the token is non-burnable (no-burn is true), the contract skips the minting step

but still attempts to route the tokens. Since the endpoint does not receive any tokens, the

transfer fails because the endpoint lacks the necessary token balance.

This issue results in the peg-in process failing for non-burnable tokens, preventing users from

receiving their tokens as intended.

Recommendation

Modify the finalize-peg-in-internal function to handle non-burnable tokens correctly by

transferring the required amount of tokens from a designated source, such as the registry.

Status

Resolved. The tokens are now transferred from the peg-out endpoint to this contract in order to

have the balance for the peg-in request.

CR-03 Remote Code Execution Through Unvalidated Token Trait

Parameter

Location
● ./btc-peg-in-endpoint-v2-03.clar: 204-229

2 https://cwe.mitre.org/data/definitions/840.html

Page 6 of 15

https://cwe.mitre.org/data/definitions/840.html


Security Audit Report: Peg-in Endpoints - XLink

● ./meta-peg-in-endpoint-v2-02.clar: 211, 239, 274, 312, 341

Classification
● CWE-20: Improper Input Validation3

Description

The functions finalize-peg-in-cross-swap in btc-peg-in-endpoint-v2-03 and

finalize-peg-in-cross-swap in meta-peg-in-endpoint-v2-02 are vulnerable to remote code

execution due to the lack of validation on the routing-traits parameter. By not validating this

parameter, attackers can supply any contract that implements the trait.

Within these functions, there is a call to cross-router-v2-02::route using as-contract, which

then calls methods of the first token trait in routing-traits. This grants the invoked methods

the contract's authority, allowing the supplied contract to execute arbitrary code with elevated

privileges. This vulnerability enables remote code execution.

This only works when routing-traits has only one token. Otherwise, the amm-helper will

validate the token against its registry.

Possible calls enabled by this remote code execution:

● aBTC contract: mint, burn, and transfer tokens.

● Any wrapped BRC-20: mint, burn, and transfer tokens.

● meta-bridge-registry-v2-03:modify requests.

● Other contracts where DAO extensions are authorized.

Recommendation

Ensure that the first token trait in routing-trait corresponds to an authorized and trusted

contract. Consider implementing a whitelist and checking parameter addresses against it.

Status

Resolved. The vulnerable functions were removed from the contracts.

High Severity Issues

No issues found.

3 https://cwe.mitre.org/data/definitions/20.html

Page 7 of 15

https://cwe.mitre.org/data/definitions/20.html


Security Audit Report: Peg-in Endpoints - XLink

Medium Severity Issues

ME-01 Missing Validation of Token Approval Allows Bridging of

Disapproved Tokens

Location

● ./meta-peg-in-endpoint-v2-02.clar

Classification
● CWE-20: Improper Input Validation4

Description

The bridge defines a token structure that includes an approved field intended to indicate

whether a token is permitted to be bridged. However, throughout the contract, this approved

field is never checked when bridging tokens. This allows tokens that are not approved to be

bridged, undermining the intended input validation mechanisms.

Recommendation

Implement validation checks to enforce the approved field before performing any bridge

operations.

Status

Resolved. Fixed according to the recommendation.

Minor Severity Issues

MI-01 Panicking on Possible Error

Location

● ./btc-peg-in-endpoint-v2-03.clar: 309

● ./meta-peg-in-endpoint-v2-02.clar: 277, 436, 515

4 https://cwe.mitre.org/data/definitions/20.html

Page 8 of 15

https://cwe.mitre.org/data/definitions/20.html


Security Audit Report: Peg-in Endpoints - XLink

Classification
● CWE-248: Uncaught Exception5

Description

Using unwrap-panic results in the transaction being finished because of a runtime error when

the provided value is an error or a none. The runtime error does not allow the caller to handle

that error and act in response. Also, this kind of error does not provide any information about

the reason for the reverted transaction to the user.

While that form is a convenient method to unwrap values, it should not be used unless it is

impossible to trigger the panic.

Recommendation

Replace unwrap-panic for unwrap! when there is a flow which might trigger an error or none

value.

Status

Acknowledged. This was acknowledged by the development team.

MI-02 Valid Orders Might Be Rejected Due to Insufficient Buffer Size

Limits

Location

● ./btc-peg-in-endpoint-v2-03.clar: 115, 119, 129, 133, 143, 146

● ./meta-peg-in-endpoint-v2-02.clar: 78, 82, 89, 93, 100, 103, 114, 117

● ./cross-peg-in-endpoint-v2-03.clar: 93, 96, 105, 108, 117, 120

Description

The endpoints have encoding and decoding functions for order data. There is a potential issue

where a valid order, when serialized using to-consensus-buff?, can exceed the buffer sizes

expected by the decoding function due to the cumulative size of its fields. For instance, in

create-order-launchpad-or-fail and decode-order-launchpad-or-fail, a 128-byte buffer

parameter is defined in the signature of the decoding function, while the values of the order

tuple could sum up to 384 bytes. If the serialized order exceeds the buffer size specified in the

5 https://cwe.mitre.org/data/definitions/248.html

Page 9 of 15

https://cwe.mitre.org/data/definitions/248.html


Security Audit Report: Peg-in Endpoints - XLink

decoding function parameter, the contract will fail to process it, resulting in the rejection of

legitimate orders.

Recommendation

Adjust buffer size in the decoding functions parameter to accept greater payloads.

Status

Partially resolved. In the commit where the fixes were reviewed,

btc-peg-in-endpoint-v2-03.clar was superseded by btc-peg-in-endpoint-v2-04.clar. This

new contract removed two pairs of encoding and decoding functions and increased the buffer

size for the decoding function of the one kept (decode-order-cross-or-fail).

meta-peg-in-endpoint-v2-02.clar was superseded by meta-peg-in-endpoint-v2-03.clar,

where the buffer size was increased in three of the four decoding functions

(decode-order-cross-swap-or-fail, decode-order-add-liquidity-or-fail, and

decode-order-remove-liquidity-or-fail).

In cross-peg-in-endpoint-v2-03.clar, the issue persists, but two of the three pairs of

functions were removed. Only create-cross-order and decode-cross-order persist.

Enhancements

These items do not represent a security risk. They are best practices that we suggest

implementing.

Id Title Status

EN-01 Remove Unused Functions Not implemented

EN-02 Use secp256k1-verify for Signatures Verification Not implemented

EN-01 Remove Unused Functions

Location
● ./btc-peg-in-endpoint-v2-03.clar: 345, 351, 354

● ./meta-peg-in-endpoint-v2-02.clar: 499, 502, 505, 508

● ./cross-peg-in-endpoint-v2-03.clar: 136, 141, 146, 286, 289, 292

Page 10 of 15



Security Audit Report: Peg-in Endpoints - XLink

Description

The contracts implement utility and mathematical functions which are not used. Also,

cross-peg-in-endpoint-v2-03 has functions for a whitelist system which is not enforced.

Recommendation

Remove unused functions.

Status

Not implemented. This was acknowledged by the development team.

EN-02 Use secp256k1-verify for Signatures Verification

Location
● ./cross-peg-in-endpoint-v2-03.clar: 269

Description

The endpoint verifies signatures by recovering the public key used with secp256k1-recover?

and then comparing it to a public key. However, the Clarity language already provides a native

function for doing it in a single instruction, secp256k1-verify.

Recommendation

Simplify the function by using secp256k1-verify.

Status

Not implemented. The development team expressed that previously the recommended

function had a bug and they are planning to implement it once it is resolved.

Other Considerations

The considerations stated in this section are not right or wrong. We do not suggest any action to

fix them. But we consider that they may be of interest to other stakeholders of the project,

including users of the audited contracts, token holders or project investors.

Page 11 of 15



Security Audit Report: Peg-in Endpoints - XLink

Centralization

Both bridges from Bitcoin (btc-peg-in-endpoint-v2-03 and meta-peg-in-endpoint-v2-02)

operate without dependence on a privileged role. The contract owner, which will be a DAO, can

modify the address where the fees are transferred, set the fee percentages and pause the

contracts.

In cross-peg-in-endpoint-v2-03, bridge operations depend on signatures from validators. The

DAO can only pause the contract.

Upgrades

The contracts do not implement upgradeability mechanisms.

Privileged Roles

These are the privileged roles that we identified on each of the audited contracts.

About CoinFabrik
CoinFabrik is a research and development company specialized in Web3, with a strong

background in cybersecurity. Founded in 2014, we have worked on over 500 decentralization

projects, including EVM-based and other platforms like Solana, Algorand, and Polkadot. Beyond

development, we offer security audits through a dedicated in-house team of senior cybersecurity

professionals, working on code in languages such as Substrate, Solidity, Clarity, Rust, TEAL, and

Stellar Soroban.

Our team has an academic background in computer science, software engineering, and

mathematics, with accomplishments including academic publications, patents turned into

products, and conference presentations. We actively research in collaboration with universities

worldwide, such as Cornell, UCLA, and École Polytechnique in Paris, and maintain an ongoing

collaboration on knowledge transfer and open-source projects with the University of Buenos

Aires, Argentina. Our management and people experience team has extensive expertise in the

field.

Methodology
CoinFabrik was provided with the source code, including automated tests that define the

expected behavior, and general documentation about the project. Our auditors spent four weeks

auditing the source code provided, which includes understanding the context of use, analyzing

Page 12 of 15

https://www.coinfabrik.com


Security Audit Report: Peg-in Endpoints - XLink

the boundaries of the expected behavior of each contract and function, understanding the

implementation by the development team (including dependencies beyond the scope to be

audited) and identifying possible situations in which the code allows the caller to reach a state

that exposes some vulnerability. Without being limited to them, the audit process included the

following analyses.

● Arithmetic errors

● Race conditions

● Misuse of block timestamps

● Denial of service attacks

● Excessive runtime cost

● Missing or misused function qualifiers

● Needlessly complex code and contract interactions

● Poor or nonexistent error handling

● Insufficient validation of the input parameters

● Incorrect handling of cryptographic signatures

● Centralization and upgradeability

After delivering a report with our findings, the development team had the opportunity to

comment on every finding and fix the issues they considered convenient. Once fixed and/or

commented, our team ran a second review process to verify that the changes to the code

effectively solve the issues found and do not unintentionally add new ones. This report includes

the final status after the second review.

Page 13 of 15



Security Audit Report: Peg-in Endpoints - XLink

Severity Classification
Security risks are classified as follows:

Issue Status
An issue detected by this audit has one of the following statuses:

➔ Unresolved: The issue has not been resolved.

➔ Resolved: Adjusted program implementation to eliminate the risk.

➔ Partially Resolved: Adjusted program implementation to eliminate part of the risk. The

other part remains in the code, but is a result of an intentional decision.

➔ Acknowledged: The issue remains in the code, but is a result of an intentional decision.

The reported risk is accepted by the development team.

➔ Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Disclaimer
This audit report has been conducted on a best-effort basis within a tight deadline defined

by time and budget constraints. We reviewed only the specific smart contract code provided

by the client at the time of the audit, detailed in the Scope section. We do not review other

Page 14 of 15

❚ Critical
These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

❚ High
These refer to a vulnerability that, if exploited, could have a substantial
impact, but requires a more extensive setup or effort compared to critical
issues. These pose a significant risk and demand immediate attention.

❚Medium
These are potentially exploitable issues. Even though we did not manage to
exploit them or their impact is not clear, they might represent a security risk
in the near future. We suggest fixing them as soon as possible.

❚Minor

These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These
kinds of issues do not block deployments in production environments. They
should be taken into account and be fixed when possible



Security Audit Report: Peg-in Endpoints - XLink

components that are part of the solution: neither implementation, nor general design, nor

business ideas that motivate them.

While we have employed the latest tools, techniques, and methodologies to identify potential

vulnerabilities, this report does not guarantee the absolute security of the contracts, as

undiscovered vulnerabilities may still exist. Our findings and recommendations are

suggestions to enhance security and functionality and are not obligations for the client to

implement.

The results of this audit are valid solely for the code and configurations reviewed, and any

modifications made after the audit are outside the scope of our responsibility. CoinFabrik

disclaims all liability for any damages, losses, or legal consequences resulting from the use or

misuse of the smart contracts, including those arising from undiscovered vulnerabilities or

changes made to the codebase after the audit.

This report is intended exclusively for the XLink team and should not be relied upon by any third

party without the explicit consent of CoinFabrik. Blockchain technology and smart contracts are

inherently experimental and involve significant risk; users and investors should fully understand

these risks before deploying or interacting with the audited contracts.

Changelog

Date Description

2024-11-01 Initial report based on commit c97ffe567d1113475b63d6d6607215b99403a0a8.

2024-11-22 Final report based on commit 47094431f52927bdc7d220c95a610bf75d23ba20.

Page 15 of 15


