
ALEX XLink Audit
BridgeEndpoint, BridgeEndpointWithAxelar &

BridgeRegistry

June 2024

By CoinFabrik

v202406



ALEX XLink Audit - Bridge Endpoint
June 2024

Executive Summary 3
Scope 3

Project Description 4
Assumptions 4

Methodology 4
Findings 5

Severity Classification 6
Issues Status 6
Critical Severity Issues 7
High Severity Issues 7

HI-01 Tokens Are Not Minted to Recipient 7
HI-02 Incorrect Token Transfer on Unwrapping Operation 7

Medium Severity Issues 8
ME-01 Required Validators Can Be Zero 8
ME-02 Excessive Permission for Changing Order Status 8

Minor Severity Issues 9
MI-01 Unvalidated Owner Address at Constructor 9
MI-02 Set Maximum Fee for Transfers 10
MI-03 Non Approved Tokens Funds Are Locked 10
MI-04 Floating Pragma 11

Enhancements 11
EN-01 Constructor Improvements 11
EN-02 Group Modifiers To Avoid Code Repetition 12
EN-03 Set Approved Token Improvements 13
EN-04 Least Privilege Principle In Registry Functions 13
EN-05 Collect Accrued Fee Improvement 14

Other Considerations 14
Centralization 14

BridgeEndpoint 14
BridgeRegistry 15

Upgrades 15
Privileged Roles 15

BridgeEndpoint 15
BridgeEndpointWithAxelar 16
BridgeRegistry 16

Audit Process 17
Changelog 18

Page 2 of 18



ALEX XLink Audit - Bridge Endpoint
June 2024

Executive Summary
Earlier in June 2024, CoinFabrik was asked to audit contracts for the ALEX XLink project
implementing a bridge between Stacks and Ethereum (or another EVM-compatible
blockchain). The project underwent several redesigns and modifications to its contracts on
the Solidity side, in particular segregating data and logic functionality by adding a registry
contract. This audit is concerned with some of the changes as described in the scope
upcoming section.

During this audit we found no critical issues, two high-severity issues, two medium-severity
issues and four minor-severity issues. Also, several enhancements were proposed.

All high and medium severity issues were resolved. Of the four minor issues, two were
resolved, one was partially resolved, and one was acknowledged. Additionally, two of the
five proposed enhancements were implemented.

Scope
The audited files are from the git repository located at https://github.com/alexgo-io/xlink.
The audit is based on the following commit
948fd511c3ed7c15bb965515e63b8df3180e7446. Fixes were checked on commit
0dbfc65362ebf414ba3674d5e2c44b88f4e15be9.

The scope for this audit includes and is limited to the following files:

● contracts/bridge-solidity/contracts/BridgeEndpoint.sol: Provides an
operational interface for peg-in users to initiate wrapping processes to Stacks chain
through the transferTo*() function. After deducting a fee for the registry, tokens
are transferred from the user to the XLink cold wallet (or burned, if applicable). The
contract also serves as an interface for peg-out user operations, where relayers are
expected to call the transferToUnwrap() function with validated orders to be then
fulfilled by the so-called “fillers”. On burnable cases, minted tokens are directly sent
to the user or to the TimeLock contract, depending on the amount.

● contracts/bridge-solidity/contracts/BridgeEndpointWithAxelar.sol: This
contract inherits from BridgeEndpoint contract and adds a specific
transferToAxelar() function, which is expected to be called by relayers on
cross-chain operations.

● contracts/bridge-solidity/contracts/BridgeRegistry.sol: This contract
provides the data and access control layer for the bridge operations. With the
MultisigWallet as the owner, it manages roles, approved tokens, fees, and other
related functionalities.

Page 3 of 18

https://github.com/alexgo-io/xlink


ALEX XLink Audit - Bridge Endpoint
June 2024

No other files in this repository were audited. Its dependencies are assumed to work
according to their documentation. Also, no tests were reviewed for this audit.

Project Description
This project is a Stacks - EVM Chains hybrid bridge which allows users to transfer their
assets across those blockchains. A wrapping process takes tokens from an EVM chain to
Stacks. It starts with a user transferring its tokens to an EVM chain endpoint smart contract
(typically BridgeEndpoint), and is followed by a set of validators listening to these
on-chain events, and a backend process generating a proof of the peg-in order and storing
it in the backend. The proofs are caught by a relayer which then must send proofs to the
Stacks blockchain. Finally, a Stacks smart contract validates these proofs and
mints/transfers the tokens to the settle address established by the user.

The unwrap process goes in the opposite direction: a user sends tokens to a smart contract
in the Stacks blockchain and expects to receive corresponding tokens on the EMV chain to a
pre-established settlement address. Again, validators read this order, and generate a proof
if the order is validated. The proofs are stored in the backend and after a relayer notices
there are enough proofs, it relays the proof to the bridge smart contract on an EVM
blockchain. This is done by calling the functions transferToWrap(),
transferToLaunchpad(), transferToAxelar(), etc.

When unwrapping, the steps are different between burnable and non-burnable tokens in
this new BridgeEndpoint version. For burnable, minted tokens are either sent to the
recipient based or to TimeLock contract if an amount threshold is exceeded. TimeLock
contract features essentially delay the unwrapping conclusion on the EVM blockchain side
by locking the tokens and generating an agreement.

Assumptions
If an assumption fails, the system could be liable to unreported threats.

● The BridgeEndpoint is expected to be used independently from the
BridgeEndpointWithAxelar, which is intended to be deployed on a specific EVM
blockchain as a hand-off point to/from Axelar.

● All burnable tokens have 18-digit precision.

● The owner of the BridgeRegistry and BridgeEndpoint contracts is an instance of
the MultisigWallet contract.

Page 4 of 18



ALEX XLink Audit - Bridge Endpoint
June 2024

Methodology
CoinFabrik was provided with the source code, including automated tests that define the
expected behavior, and general documentation about the project. Our auditors spent one
week auditing the source code provided, which includes understanding the context of use,
analyzing the boundaries of the expected behavior of each contract and function,
understanding the implementation by the development team (including dependencies
beyond the scope to be audited) and identifying possible situations in which the code
allows the caller to reach a state that exposes some vulnerability. Without being limited to
them, the audit process included the following analyses.

● Arithmetic errors
● Outdated version of Solidity compiler
● Race conditions
● Reentrancy attacks
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and contract interactions
● Poor or nonexistent error handling
● Insufficient validation of the input parameters
● Incorrect handling of cryptographic signatures
● Centralization and upgradeability

After delivering a report with our findings, the development team had the opportunity to
comment on every finding and fix the issues they considered convenient. Once fixed and/or
commented, our team ran a second review process to verify that the changes to the code
effectively solve the issues found and do not unintentionally add new ones. This report
includes the final status after the second review.

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

ID Title Severity Status

HI-01 Tokens Are Not Minted to Recipient High Resolved

Page 5 of 18



ALEX XLink Audit - Bridge Endpoint
June 2024

ID Title Severity Status

HI-02 Incorrect Token Transfer on Unwrapping
Operation

High Resolved

ME-01 Required Validators Can Be Zero Medium Resolved

ME-02 Excessive Permission for Changing Order
Status

Medium Resolved

MI-01 Unvalidated Owner Address at Constructor Minor Resolved

MI-02 Set Maximum Fee for Transfers Minor Acknowledged

MI-03 Non Approved Tokens Funds Are Locked Minor Resolved

MI-04 Floating Pragma Minor Resolved

Severity Classification
Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

● High: These refer to a vulnerability that, if exploited, could have a substantial
impact, but requires a more extensive setup or effort compared to critical issues.
These pose a significant risk and demand immediate attention.

● Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds
of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Page 6 of 18



ALEX XLink Audit - Bridge Endpoint
June 2024

Issues Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

● Acknowledged: The issue remains in the code, but is a result of an intentional
decision. The reported risk is accepted by the development team.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Critical Severity Issues
No issues found.

High Severity Issues

HI-01 Tokens Are Not Minted to Recipient
Location:

● contracts/bridge-stacks/contracts/BridgeEndpoint.sol: 322

Classification:
● CWE-670: Always-Incorrect Control Flow Implementation1

In the case of burnable unwrapping operations, tokens are minted to the BridgeEndpoint
contract using address(this) instead of being minted to the recipient. This means that
users do not receive their unwrapped funds; on the contrary, they are held by the endpoint.

Recommendation
Implement the correct flow on transferToUnwrap() for the burnable token scenario.

Status
Resolved. The time lock functionality was implemented on BridgeEndpoint to handle
burnable tokens on unwrapping operations. Tokens are minted to the user if the amount is
less than timeLockThreshold; if not, there is a delay on the release managed by the
TimeLock contract.

1 https://cwe.mitre.org/data/definitions/670.html

Page 7 of 18

https://cwe.mitre.org/data/definitions/670.html


ALEX XLink Audit - Bridge Endpoint
June 2024

HI-02 Incorrect Token Transfer on Unwrapping Operation
Location:

● contracts/bridge-stacks/contracts/BridgeEndpoint.sol: 431

Classification:
● CWE-669: Incorrect Resource Transfer Between Spheres2

Once a relayer has called transferToUnwrap() for a non-burnable token, the order is
queued in the unwrapSent map. These orders, which act as "requests”, are then filled by
others who send their own tokens to the recipient and finalize the request. This is done
through the finalizeUnwrap() public function, which receives an array of order hashes.
For each order, the internal function _finalizeUnwrap() is called. If checks are passed
(order not sent, etc.) the BridgeEndpoint transfers the amount to the recipient. However,
this is not the expected behavior, as tokens must be sent from the filler (msg.sender). This
can lead to incorrect behaviors, potentially exhausting bridge funds and preventing the
finalization of user’s peg-outs.

Recommendation
Replace transferFixed() with transferFromFixed() and add msg.sender as the
address _from argument. This way, the code correctly implements the intended hot wallet
logic.

Status
Resolved. Fixed according to the recommendation.

Medium Severity Issues

ME-01 Required Validators Can Be Zero
Location:

● packages/contracts/bridge-solidity/contracts/BridgeRegistry.sol: 73,

101

Classification:
● CWE-754: Improper Check for Unusual or Exceptional Conditions3

The public variable requiredValidators can be set to zero. The function
setRequiredValidators(uint256 _requiredValidators) only checks for an upper
bound. This issue also appears at deployment time, where requiredValidators is given
its initial value on the constructor function. Although this is an only-owner action and an

3 https://cwe.mitre.org/data/definitions/754.html
2 https://cwe.mitre.org/data/definitions/669.html

Page 8 of 18

https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/669.html


ALEX XLink Audit - Bridge Endpoint
June 2024

unlikely scenario, the risk associated is very high since orders can be executed without
proofs.

Recommendation
Add checks to ensure requiredValidators is always greater than zero. Additionally, it is
advisable to add a MIN_REQUIRED_VALIDATORS constant, similar to the upper bound. In
constructor, it might even be prudent to set requiredValidators as
MAX_REQUIRED_VALIDATORS.

Status
Resolved. Fixed according to the recommendation.

ME-02 Excessive Permission for Changing Order Status
Location:

● packages/contracts/bridge-solidity/contracts/BridgeRegistry.sol:

178-180

Classification:
● CWE-285: Improper Authorization4

Approved addresses from the MultisigWallet contract can change the status of a sent
order from true to false by calling setOrderSent(bytes32 orderHash, bool sent)

function. While switching the status from false to true is essential within the protocol,
allowing the inverse change is highly permissive and can have significant unexpected
consequences.

A similar issue exists with the setOrderValidatedBy(bytes32 orderHash, address

signer, bool validated) function. Permitting changes in both directions for these
statuses can lead to unauthorized modifications and potential security risks.

Recommendation
Restrict these functions to only allow status changes from false to true. If necessary, add an
additional feature specifically to reset an order status under strict permissions and
conditions. See related enhancement EN-04 Least Privilege Principle In Registry Functions.

Status
Resolved. Fixed according to the recommendation; if the boolean status is to be changed
from true to false, only the owner can perform it.

4 https://cwe.mitre.org/data/definitions/285.html

Page 9 of 18

https://cwe.mitre.org/data/definitions/285.html


ALEX XLink Audit - Bridge Endpoint
June 2024

Minor Severity Issues

MI-01 Unvalidated Owner Address at Constructor
Location:

● packages/contracts/bridge-solidity/contracts/BridgeEndpoint.sol:

134-146

● packages/contracts/bridge-solidity/contracts/BridgeRegistry.sol:

66-74

The constructor for the BridgeEndpoint contract accepts three addresses as input. While
_registry and _pegInAddress are checked to be nonzero, the owner is not checked. Same
issue occurs in the BridgeRegistry contract. An owner set to the zero address would
result in an unusable contract that needs to be redeployed.

Recommendation
Require the owner to be non-zero in the constructor function. Also, refer to the related
EN-01 Constructor Improvements which provides an overall enhancement for constructors.

Status
Resolved. Fixed according to the recommendation. A zero address check was added to the
BridgeEndpoint and BridgeRegistry constructors.

MI-02 Set Maximum Fee for Transfers
Location:

● packages/contracts/bridge-solidity/contracts/BridgeEndpoint.sol

When calling the internal _transfer() during wrapping operations, it is advisable to
ensure that fees are not excessive. Since the BridgeRegistry::setMinFeePerToken()
function is not capped, users could be made to pay fees in excess to their expectations. In
fact, even if users check fees before initiating a transaction, they could still be frontrun and
face higher fees.

Note: This issue corresponds to MI-03 from the previous ALEX XLink Bridge Stacks & EVM
Chain audit report.

Recommendation
Introduce a maximumFeeToPay parameter to the transfer function. This parameter will
enable users to set the maximum fee they are willing to pay. If the fee exceeds this value,
the function should revert.

Page 10 of 18



ALEX XLink Audit - Bridge Endpoint
June 2024

Status
Acknowledged.

MI-03 Non Approved Tokens Funds Are Locked
Location:

● packages/contracts/bridge-solidity/contracts/BridgeRegistry.sol

There are two functions within the contract to withdraw the registry's token balance:
collectAccruedFee() and transferFixed(). However, both functions use the
onlyApprovedToken modifier. This restriction means that funds of a non-approved token
cannot be withdrawn from the registry. The only way to withdraw such funds is by
approving the token again, which might not be desirable if the token disapproval was
triggered due to a security issue.

Recommendation
Add a mechanism to withdraw non-approved token funds. This can be archived by either:

○ Removing onlyApprovedToken modifier from the transferFixed() function.
○ Adding a specific only-owner function to facilitate this purpose.

Note: There is no setAccruedFee() function, so any token transfer movement should
consider this limitation, such as setting the accrued fee to zero when withdrawing all funds.
See related EN-05 Collect Accrued Fee Improvement.

Status
Resolved. Fixed according to the recommendation. The transferFixed() function was
restricted to only-owner access and now allows transfers of any token held by the registry.

MI-04 Floating Pragma
Contracts should be deployed with the same compiler version that they have been
thoroughly tested with. Locking the pragma helps to ensure that contracts do not
accidentally get deployed using, for example, an outdated compiler version that might
introduce bugs that negatively affect the contract system.

Recommendation
Lock the pragma version, replacing pragma solidity ^0.8.17; with a specific patch,
preferring the most updated version. For example, pragma solidity 0.8.26.

Status
Resolved. The pragma version was locked to version 0.8.17.

Page 11 of 18



ALEX XLink Audit - Bridge Endpoint
June 2024

Enhancements
These items do not represent a security risk. They are best practices that we suggest
implementing.

ID Title Status

EN-01 Constructor Improvements Not implemented

EN-02 Group Modifiers To Avoid Code Repetition Not implemented

EN-03 Set Approved Token Improvements Implemented

EN-04 Least Privilege Principle In Registry Functions Implemented

EN-05 Collect Accrued Fee Improvement Not implemented

EN-01 Constructor Improvements
Location:

● packages/contracts/bridge-solidity/contracts/BridgeEndpoint.sol:

134-146

● packages/contracts/bridge-solidity/contracts/BridgeRegistry.sol:

66-74

The constructor parameter owner is unnecessarily typed as MultisigWallet. It is only used
to be cast to an address type and passed as a function argument. In BridgeEndpoint, it is
only used to define the owner at line 145. In BridgeRegistry, it is used to define the
owner and to set the default admin role of the AccessControl contract at lines 71 and 72.

Furthermore, executing _transferOwnership(address(owner)) can actually be replaced
by invoking the Ownable contract constructor directly. This can be achieved by using5

Ownable(address(owner)) between the function parameters and body. If the former
observation is implemented, it may also be simplified to Ownable(owner).

Status
Not implemented.

5

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol#
L38

Page 12 of 18

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol#L38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol#L38


ALEX XLink Audit - Bridge Endpoint
June 2024

EN-02 Group Modifiers To Avoid Code Repetition
Location:

● packages/contracts/bridge-solidity/contracts/BridgeEndpoint.sol

● packages/contracts/bridge-solidity/contracts/BridgeEndpointWithAxela

r.sol

In all public transfer functions, the following four modifiers are consistently used in the
same order: nonReentrant, whenNotPaused, onlyAllowlisted,
onlyApprovedToken(token), notContract.

Similarly, for privileged transfer functions transferToUwrap() and transferToAxelar(),
six modifiers are uniformly applied in the same order: onlyApprovedRelayer,
nonReentrant, whenNotPaused, onlyApprovedToken(token), notContract,
notWatchlist(recipient).

Recommendation
Consider grouping these modifiers into composite modifiers to reduce code repetition and
minimize potential mistakes. Say, publicTransfers is the modifier for the public transfers,
and priviledgedTransfers for unwrap privileged operations.

Status
Not implemented.

EN-03 Set Approved Token Improvements
Location:

● packages/contracts/bridge-solidity/contracts/BridgeRegistry.sol:

66-74

The BridgeRegistry::setApprovedToken() setter function is very powerful since it has
the ability to change every field of a bridge’s token and simultaneously approve or
disapprove it for operation on the bridge. Adding more granularity to these features is
advisable to reduce potential errors. For instance, since AccessControl::grantRole() and
AccessControl::revokeRole() can be used for approving purposes, an hypothetical
BridgeRegistry::setTokenDetails() can replace the current implementation just for
setting the remaining fields.

Additionally, there are no boundaries for the uint256 parameters of the
setApprovedToken() function. The suggested checks are as follows.

1. feePctPerToken must be less than 1e18 since it is a percentage. Setting this higher
leads to SUB_OVERFLOW error in BridgeEndpoint::_transfer(), as the fee will be
greater than the amount.

2. minAmount should be less than or equal to maxAmount for correctness.

Page 13 of 18



ALEX XLink Audit - Bridge Endpoint
June 2024

3. minFeePerToken should be less than or equal to minAmount for consistency.

Status
Implemented.

EN-04 Least Privilege Principle In Registry Functions
Location:

● packages/contracts/bridge-solidity/contracts/BridgeRegistry.sol

Some registry functions that have the onlyApproved modifier are solely called by the
BridgeEndpoint contract within the audited scope. These functions are addAccruedFee(),
setOrderSent() and setOrderValidatedBy(). Then remains transferFixed() which is
not called by contracts within the scope and allows the transfer of arbitrary amounts of an
approved token from the registry to the caller.

Evaluate whether it makes sense to make the approved role more granular by adding, for
example, an endpoint role. This enhancement is related to ME-02 Excessive Permission for
Changing Order Status.

Status
Implemented. The enhancement has been implemented as a result of fixes for issues
ME-02 Excessive Permission for Changing Order Status and MI-03 Non Approved Tokens
Funds Are Locked.

EN-05 Collect Accrued Fee Improvement
Location:

● packages/contracts/bridge-solidity/contracts/BridgeRegistry.sol

Currently there is an addAccuredFee() function which is called by the BridgeEndpoint
when receiving peg-in orders. These fees can be collected with collectAccruedFee() by
the owner. However, bridge funds can vary due to the possibility of approved addresses
calling transferFixed(). As a result, the registry’s token balance may be less than
collectAmount (line 149), causing ERC20Fixed::transferFixed() to fail due to
insufficient funds.

Recommendation
It might be useful to make collectAccruedFee() flexible for the case where the total
balance is less than collectAmount by transferring all balance in such cases. Note
CollectAccruedFeeEvent should be updated accordingly.

Status
Not implemented.

Page 14 of 18



ALEX XLink Audit - Bridge Endpoint
June 2024

Other Considerations
The considerations stated in this section are not right or wrong. We do not suggest any
action to fix them. But we consider that they may be of interest to other stakeholders of the
project, including users of the audited contracts, token holders or project investors.

Centralization

BridgeEndpoint
The whole BridgeEndpoint functionality can be paused by the owner. The owner is also
responsible for managing Allowlistable functionalities and adding or removing users for
the list. It is notable that onlyAllowlisted modifier is present in all the public transfer
functions to initiate a wrapping process.

Furthermore, the owner is capable of managing TimeLock configurations, such as setting
the TimeLock contract instance address to be used as the timeLock variable. In particular,
TimeLock’s releaseDelay storage variable is not bounded.

BridgeRegistry
The owner of this contract is initially set to the MultisigWallet contract. Additionally, the
DEFAULT_ADMIN_ROLE is also initially assigned to it. Therefore, the MultisigWallet can
perform all only-owner operations and manage access control as well.

Upgrades
Contracts are not upgradable.

Privileged Roles
All the contracts are children of OpenZeppelin’s Ownable contract, so the owner can
perform all inherited functions .6

BridgeEndpoint

Owner
The owner of the contract can call the following functions.

6 https://docs.openzeppelin.com/contracts/4.x/access-control#ownership-and-ownable

Page 15 of 18

https://docs.openzeppelin.com/contracts/4.x/access-control#ownership-and-ownable


ALEX XLink Audit - Bridge Endpoint
June 2024

● pause(), unpause(). Allows pausing and unpausing the entire endpoint
functionality. Note the whenNotPaused modifier is present in all transferTo*()
functions and in the finalizeUnwrap() function.

● onAllowList(), offAllowList(). Turns on and off the Allowlistable
functionality. When on, only listed address can call the functions guarded by the
onlyAllowlisted modifier.

● addAllowlist(), removeAllowlist(). Adds and removes addresses from the
allowlisted map.

● setTimeLock(). Sets the TimeLock contract instance address.
● setTimeLockThreshold(), setTimeLockThresholdByToken(). Sets the threshold

amount for using the TimeLock contract. There is a general threshold and a specific
threshold for each token. The maximum of both is used.

Relayer
A relayer may call the following functions.

● transferToUnwrap(). Initiates a peg-out order on the EVM chain by sending order
validators’ proofs.

BridgeEndpointWithAxelar
As this contract inherits from BridgeEndpoint, only changes or additional roles are
documented here.

Owner
The owner of the contract can call the following functions.

● setTimeLock(). Sets the TimeLockWithAxelar contract instance address.

Relayer
A relayer can call the following functions.

● transferToAxelar(). Initiates a cross-chain peg-out order on the EVM chain by
sending order validators’ proofs.

BridgeRegistry

Owner
The owner of the contract can call the following functions.

● transferFixed(). Transfers an arbitrary amount of a token from the registry’s
balance to the owner.

● setMinFeePerToken(). Sets the minimum fee for a token.
● setRequiredValidators(). Sets the minimum required validators’ proofs to

consider an order valid.

Page 16 of 18



ALEX XLink Audit - Bridge Endpoint
June 2024

● setWatchlist(). Sets an address as whitelisted or not by modifying the watchlist
map. This functionality is currently unused but might be used by other contracts
outside of this audit scope.

● setApprovedToken(). Adds or modifies a bridge token, including the ability to
approve or disapprove it.

● collectAccruedFee(). Collects accrued fee of a certain token and sends it to the
owner.

● grantValidators(), revokeValidators(). Grants or revokes addresses their
VALIDATOR_ROLE.

● Since the owner is an instance of the MultisigWallet contract, the owner can also
call the functions in the section below (Approved), with the caveats for two
functions.

○ setOrderSent(). Allows setting an order, identified by its orderHash, as
sent or unsent by modifying the orderSent map.

○ setOrderValidatedBy(). Allows setting an order as validated (or
unvalidated) by a certain signer (validator) by modifying the
orderValidatedBy map.

Approved
The approved role is managed by an instance of the MultisigWallet contract. The
privileged calls related to this role are guarded by the onlyApproved modifier, which
ensures that the caller has the APPROVED_ROLE on the MultisigWallet or that the caller is
the MultisigWallet itself (essentially the owner of the contract, see Assumptions section).
Approved addresses have the following privileges.

● addAccruedFee(). Adds accrued fee per token when performing a peg-in operation.
● setOrderSent(). Allows setting an order, identified by its orderHash, as sent by

modifying the orderSent map. Changing the status from true to false is not
permitted (it is an only-owner action).

● setOrderValidatedBy(). Allows setting an order as validated by a certain signer
(validator) by modifying the orderValidatedBy map. Changing the status from
true to false is not permitted (it is an only-owner action).

DEFAULT_ADMIN_ROLE
This role is initially the same as the contract owner, which is the MultisigWallet contract.
AccessControl includes a special role called DEFAULT_ADMIN_ROLE, which acts as the
default admin role for all roles. This role is also its own admin: it has permission to grant
and revoke its own role .7

7

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessContro
l.sol#L44

Page 17 of 18

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol#L44
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol#L44


ALEX XLink Audit - Bridge Endpoint
June 2024

VALIDATOR_ROLE
Addresses with the VALIDATOR_ROLE are responsible for signing orders. This role is used in
the BridgeEndpoint to validate orders.

RELAYER_ROLE
TAddresses with the RELAYER_ROLE are responsible for submitting peg-out orders. The role
is used in the BridgeEndpoint and BridgeEndpointWithAxelar to perform privilege
transferToUnwrap() and transferToAxelar() calls.

Audit Process
A previous audit was conducted by CoinFabrik in early June, titled ALEX XLink Bridge
Stacks & EVM Chain Audit 2024-06 which included the files in scope. Afterward, design
changes to the protocol required a re-audit to the bridge endpoint and registry. Some of the
issues from the previous audit still remain and are reported here with a corresponding note.

Changelog
● 2024-06-21 – Initial report based on commit

948fd511c3ed7c15bb965515e63b8df3180e7446.
● 2024-07-08 – Final report based on commit

0dbfc65362ebf414ba3674d5e2c44b88f4e15be9.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the ALEX XLink project since CoinFabrik has not reviewed its
platform. Moreover, it does not provide a smart contract code faultlessness
guarantee.

Page 18 of 18


